I CLASSIFICATION OF BEHAVIOR USING UNSUPERVISED TEMPORAL NEURAL NETWORKS Kristin L . Adair

نویسنده

  • Kristin L. Adair
چکیده

Adding recurrent connections to unsupervised neural networks used for clustering creates a temporal neural network which clusters a sequence of inputs as they appear over time. The model presented combines the Jordan architecture [61 with the unsupervised learning technique Adaptive Resonance Theory, FuzzyART[41. The combination yields a neural network capable of quickly clustering sequential pattern sequences as the sequences are generated. The applicability of the architecture is illustrated through a facility monitoring problem.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hand Gesture Recognition from RGB-D Data using 2D and 3D Convolutional Neural Networks: a comparative study

Despite considerable enhances in recognizing hand gestures from still images, there are still many challenges in the classification of hand gestures in videos. The latter comes with more challenges, including higher computational complexity and arduous task of representing temporal features. Hand movement dynamics, represented by temporal features, have to be extracted by analyzing the total fr...

متن کامل

INTEGRATED ADAPTIVE FUZZY CLUSTERING (IAFC) NEURAL NETWORKS USING FUZZY LEARNING RULES

The proposed IAFC neural networks have both stability and plasticity because theyuse a control structure similar to that of the ART-1(Adaptive Resonance Theory) neural network.The unsupervised IAFC neural network is the unsupervised neural network which uses the fuzzyleaky learning rule. This fuzzy leaky learning rule controls the updating amounts by fuzzymembership values. The supervised IAFC ...

متن کامل

طبقه بندی و شناسایی رخساره‌های زمین‌شناسی با استفاده از داده‌های لرزه نگاری و شبکه‌های عصبی رقابتی

Geological facies interpretation is essential for reservoir studying. The method of classification and identification seismic traces is a powerful approach for geological facies classification and distinction. Use of neural networks as classifiers is increasing in different sciences like seismic. They are computer efficient and ideal for patterns identification. They can simply learn new algori...

متن کامل

An Unsupervised Learning Method for an Attacker Agent in Robot Soccer Competitions Based on the Kohonen Neural Network

RoboCup competition as a great test-bed, has turned to a worldwide popular domains in recent years. The main object of such competitions is to deal with complex behavior of systems whichconsist of multiple autonomous agents. The rich experience of human soccer player can be used as a valuable reference for a robot soccer player. However, because of the differences between real and simulated soc...

متن کامل

Solving nonlinear Lane-Emden type equations with unsupervised combined artificial neural networks

In this paper we propose a method for solving some well-known classes of Lane-Emden type equations which are nonlinear ordinary differential equations on the semi-innite domain. The proposed approach is based on an Unsupervised Combined Articial Neural Networks (UCANN) method. Firstly, The trial solutions of the differential equations are written in the form of feed-forward neural networks cont...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008